
Czech Technical University
Faculty of Electrical Engineering
Department of Cybernetics

Bachelor’s thesis

Activity analysis from smart bed strain gauge data

Nguyen Diem Huong

Supervisor: Ing. Macaš Martin, Ph.D

Study Programme: Open Informatics
Field of Study: Computer and Informatic Science

May 2019

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

456150Personal ID number:Nguyen Diem HuongStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer and Information ScienceBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Activity Analysis from Smart Bed Strain Gauge Data

Bachelor’s thesis title in Czech:

Analýza aktivit z tenzometrických dat chytrého lůžka

Guidelines:
1. Define typical classes of activities that can be performed by patient in a hospital bed.
2. Propose a pattern recognition system for activity detection and implement it.
3. Analyze experimentally which activities can be successfully detected and which cannot.
4. Implement a demonstrative example of online detection of selected activities including a proper visualization.

Bibliography / sources:
[1] Manuál k nemocničnímu lůžku LINET.
[2] Sánchez, D., Tentori, M., & Favela, J. (2008). Activity recognition for the smart hospital. IEEE intelligent systems, 23(2).
[3] Wong, S., & Tan, C. S. (2013). Smart hospital bed.
[4] Nguyen, H. H. (2016). Advanced assistive control strategies for smart hospital beds (Doctoral dissertation).

Name and workplace of bachelor’s thesis supervisor:

Ing. Martin Macaš, Ph.D., Cognitive Neurosciences, CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2019Date of bachelor’s thesis assignment: 11.01.2019

Assignment valid until: 30.09.2020

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Martin Macaš, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgement

My deepest gratitude belongs to my mother, a person who has never given up no matter what
circumstances to achieve better life for me and my family. I am also very much obliged to
everyone who has participated in the project and mainly my supervisor Ing. Macaš Martin,
Ph.D. for giving me a chance to contribute to the research and for his continuous support.

My sincere gratitude also belongs to Patrik Kopecký who has always encouraged me through
my studies and took his time to proofread my first attempt on a serious official project.

ii

Author statement

I declare that the presented work was developed independently and that I have listed all
sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university theses.

Prague, date

iii

Abstrakt

Užití automatizace a dat je nedílnou součástí v současném průmyslu, včetně toho
zdravotnického. Vzrůstající popularita umělé inteligence umožnila vytváření pomocných
nástrojů, které zvyšují kvalitu diagnóz a péče o pacienty. Jedno z využívaných „chytrých“
zařízení je nemocniční lůžko poskytující data o pacientovi pro vyhodnocování různých
statistik. Tato práce se zaměřuje na vizualizaci a detekci poloh v reálném čase použitím čtyř
tenzometrů vestavěných v konstrukci postele. Pro tyto účely byl vytvořen vlastní software na
extrakci a zpracování dat. Experiment pro detekci poloh s modelem algoritmu SVM ukázal
uspokojivé výsledky i při učení klasifikačního modelu pouze na jednom subjektu. Model
byl schopen v reálném čase rozpoznat polohy čtyř cizích subjektů různých vah a konstitucí.
Experimenty byly uskutečněny v laboratoři v CIIRCu a jejich průběh byl zaznamenán na
video přiložené k práci.

Klíčová slova: inteligentní lůžko, online vizualizace dat, detekce aktivit, online detekce
poloh

iv

Abstract

Use of automation and data appears in most industries and branches including healthcare.
The rising popularity of AI paved the way for creation of tools that help improving the
quality of diagnosis and care. One of these “smart” gadgets is a hospital bed that provides
data for evaluation of the patient’s statistics. This thesis focuses on real-time visualization
and posture detection using four strain gauges built within the bed’s construction. For
this purpose, it was necessary to implement a respective data processing software for data
extraction. A conducted experiment with the SVM-trained model showed that despite being
trained on only one subject, the model was able to sufficiently detect postures of four foreign
subjects of different weights and constructions. All the experiments were held and recorded
in the laboratory of CIIRC and corresponding demonstrative video can be found on CD
attached to this thesis.

Keywords: smart hospital bed, online data visualization, activity detection, online posture
detection

v

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Goal description . 2
1.3 Structure . 2
1.4 State of the art . 3

2 Smart hospital bed 5

2.1 Basic description . 5
2.2 Communication . 6

3 Data 7

3.1 Structure description . 7
3.2 Data processing . 9

3.2.1 Endianness . 10
3.2.2 Signed number representation . 11
3.2.3 Byte stuffing . 12

4 Data visualization 13

4.1 Tools . 14
4.2 Implementation . 14

4.2.1 Line plot . 16
4.2.2 Scatter plot . 17

4.3 Discussion . 20
4.3.1 Visualization in higher-dimensions . 20

5 Activity detection 22

5.1 Classes of activities . 22

vi

5.2 Classification . 23
5.2.1 Data set acquisition . 26
5.2.2 Preprocessing . 26
5.2.3 Performance estimator . 27

5.3 Results . 27
5.3.1 Discussion . 28

6 Online detection 30

6.1 Implementation . 30
6.2 Classification model . 31
6.3 Experiment . 32

7 Conclusion 34

7.1 Future research . 35

Appendix A Scatter plots and tables 39

Appendix B List of attachments 42

vii

List of Figures

4.a Line plot . 16

4.b Scatter plot . 17

4.c Saturation representing density of points . 18

4.d 4D bubble plot example . 21

4.e Scatter matrix example . 21

5.a Position sitting . 22

5.b Position supine . 22

5.c Position right log . 23

5.d Position left log . 23

5.e Centers of mass of subject H . 28

5.f Gauge factors 8E, 8F and 90 of subject H (3D) 29

5.g Detailed view of inseparable supine and sitting in figure 5.f 29

6.a Online visualization with posture classification 30

A.1 Scatter matrix of strain gauges (subject H) 40

A.2 Scatter matrix of strain gauges (subject P) 40

A.3 3D Scatter plot of strain gauges (subject P) 41

A.4 Scatter plot centers of mass (subject P) . 41

viii

List of Tables

3.1 Signed and unsigned bytes 7E 7C . 12

5.1 Data set acquisition procedure for one posture 26

5.2 Class error rates of each classifier on each position (subject H) 27

6.1 Class error rate of each classifier (subject P) 32

6.2 Subject weights and heights . 32

A.1 Total accuracy of classifiers on subject P . 39

A.2 Altered data set acquisition procedure for sitting 39

ix

Acronyms

1-NN 1-nearest neighbour. 26, 31–33

5-NN 5-nearest neighbours. 30

CSV comma separated value. 19, 30

DT decision tree. 24, 26, 27, 31

FBG fiber bragg grating. 3

FSR force sensing resistor. 4

k-NN k-nearest neighbours. 24, 26, 32

KfCV k-fold cross validation. 25, 26

MAP maximum a posteriori. 23

NB naive Bayes. 23, 26, 31

OvO one-vs.-one. 23

OvR one-vs.-rest. 23

PU pressure ulcers. 3

RBF radial-basis function. 24

SkCV stratified k-fold cross validation. 26

SVM support vector machine. 24, 26, 31–33

x

Chapter 1

Introduction

1.1 Motivation

Recent trend of simultaneous growth of life expectancy and decrease in birth rate resulted in
an aging population that requires assistance. The modernization of healthcare is necessary
to reduce the cost of much needed resources and to make up for the concerning absence
of hospital and care taking employees. The situation calls for support of technology to
increase effectivity of the staff through automatic information evaluation or estimation of
user activities within the hospital [1].

One of the demonstrations of healthcare automation is the smart hospital bed. Providing
and evaluating statistics about patients such as movement patterns or position improves
the quality of health service while simultaneously lifts responsibilities off the hospital staff.
Moreover, monitoring sensitive activities like breathing and heart rate can be used to inform
the personnel, leading to a reduction of unnecessary routine checkups on patients in good
condition. Aside from monitoring activities, smart beds have also been developed with
different intentions such as improving patient transportation [2] to reduce physical demand
for nurses.

1

CHAPTER 1. INTRODUCTION 1.2. GOAL DESCRIPTION

1.2 Goal description

This thesis intends to build bases for smart bed monitoring tool development. This goal
has been deprecated for the time being due to insufficient information foundation about the
bed’s communication protocol. Beside its original goals, this thesis presents a solution for
acquisition of the bed’s data structure through reverse engineering, which allows real-time
data visualization and analysis.

The ultimate task of the thesis is to implement an online posture detection system, including
an online visualization tool. The real-time nature of the visualization requires constant flow
of data, making the reconstruction of data acquisition software necessary. Such data is used
for proposing a posture recognition model that is integrated into the visualization, creating
an online detection system.

1.3 Structure

The thesis is divided according to the three extensive topics – description, visualization
and pattern recognition. The description can be found in chapters 2 and 3 which contain
the subject of recovering the data structure and introducing the equipment available for
the project, respectively. The visualization is described in chapter 4 which focuses on
transformation of the obtained data into an easily understandable format and its real-time
display. The offline pattern recognition is described in chapter 5 that analyzes classifiers for
posture detection. Finally, chapter 6 proposes an online posture detection system.

2

CHAPTER 1. INTRODUCTION 1.4. STATE OF THE ART

1.4 State of the art

Various technologies and non-intrusive methods have been proposed for a smart bed
monitoring system, including load cell sensors. The authors of [3] suggested using sensors
for ballistocardiography to measure signals of heartbeat and respiration, while [4] used
it for movement detection. Although both papers were focused on relatively different
aspects, both mentioned that the method offers the possibility for long term home monitoring
without a medical supervisor, making it a non-stressful method of treating sleep disorders
and similar issues.

The monitoring of physiological factors was the main focus of [5] that described
implementation using multimode fibre optic sensors. The results showed that it was
an effective low cost and comfortable method. However, it was mentioned that it is not a
replacement for the standard methods due to the need of signal processing. Research [6]
also proposed usage of an optical sensing technology – 12 wavelength-based FBG pressure
sensors. The error rate of ± 1 breaths per minute was reached, in contrast to the manual
computing. The research also proposed a real-time pressure distribution, which is meant to
alert the staff to prevent pressure ulcers and with an improved behavior tracking even fall of
the patient off the bed.

A different approach was presented in [7], utilizing an idea of detecting posture based on a
sensor designed for a different task. The research focused on sensory substitution used
acoustic and temperature sensors, reaching a result of detecting 90% of position changes
in a controlled environment. The research showed that ’smart’ monitoring does not have to
rely solely on pressure sensors as the alternate sensors can be used for a satisfactory result
as well.

Moving on from the smart bed technologies to posture recognition, a research focused on
prevention of pressure ulcers (PU) [8] used posture recognition to correctly shift patients
into a new position. Using support vector machines, the risk of developing PU is predicted,
changing the patient’s position when needed. The position detection was implemented with
k-nearest neighbors classifier, reaching 97.7% accuracy. Solving the problem of extended
stays due to PU would save hospital resources [9] while the automatic posture shift would
reduce the physical demand.

The problem with PU was also a subject of [10] despite the absence of automatic position
shifting. The research focused on detecting bed postures using mutual capacitance
sensing to inform a care taker of patient’s previous position to prevent bed sores. Decision
tree was chosen to recognize sitting, lying on the sides and lying on the back or stomach.
The classifier reached the accuracy of 93.8% with an experiment done on 8 people weighting
80-95 kg. The classifier performance showed to be greatly affected by the body construction

3

CHAPTER 1. INTRODUCTION 1.4. STATE OF THE ART

of the testing subjects, achieving worse results of 80.76% on early experiments with 14 people
of varying weight and height.

Posture recognition has also been utilized in [11] for sleep patterns recognition purposes.
The authors decided to record data for a particular period of time and work with vectors
that represent values of pressure sensors for each time stamp. Vectors were then handled as
frames of a video and sensors as pixel of an image. Due to that, the posture classification
can be managed as a classification of static frames using Hidden Markov Model. Models
were trained with Baum-Welch algorithm and the prediction was done by Viterbi algorithm.
The accuracy of the classification was 90.4%.

A proposition of a posture detection method using Bayesian classification was made in
2008 by [12], using 16 FSR sensors. This approach was based on kurtosis and skewness,
depicting the shape of pressure contour. For classification and modeling, it was assumed that
the prior probabilities are uniformly distributed, selecting the Gaussian distribution. The
experiment was done for 3 laying positions – supine, right log and left log – reaching the
average precision rate of 78.7% for all classes, the most problematic detection being supine.
This research showed that despite the lower number of pressure sensors, a satisfactory result
can also be reached.

A Gaussian Mixture Model-based clustering method was applied for a posture
classification and limb identification in [13]. Experiments were done on 9 subjects and 13
different sleeping positions. The method was able to recognize three main stable sleeping
postures, showing the accuracy to be 98.4%. The identification of limbs also showed good
results – accuracy of 91.6%, recognizing 8 limbs in supine and 5 limbs in left or right side
postures.

4

Chapter 2

Smart hospital bed

To put the data analysis into perspective, it is necessary to introduce the reader to the
equipment used for data acquisition. The chapter provides information about the bed for
better understanding of proficient parts of the thesis.

2.1 Basic description

The smart hospital bed prototype unit was provided by a major European hospital bed
manufacturer Linet, known mainly for development of intelligent bed systems [14]. The
prototype used for this particular research uses pressure measuring metal sensors called
strain gauges (gages). The bed has exactly four such sensors built in its construction,
labeled by the value of their position in the sent packet (142, 143, 144 and 145).

Any external disturbance that causes stress or strain generates changes in electrical resistance,
creating a dimensionless value, called a ’factor’ of the strain gauge. Then gauge factor is a
constant of proportionality between strain and relative change of resistance [15].

Let us define the gauge factor as:
∆R/RG

ε
, (2.1)

where ∆R is resistance caused by strain, RG is resistance of gauge at rest and ε is strain [16].

The measurement system offers to measure many other variables such as electric current,
values indicating an all-over state of the bed, etc. These values are not necessarily relevant
to the thesis and will not be explained further. Besides the gauge factors, the smart bed
provides two other useful attributes for the current projects – weight and centers of mass.

5

CHAPTER 2. SMART HOSPITAL BED 2.2. COMMUNICATION

2.2 Communication

The communication with the bed occurs via USB port connected to a computer.

Previously, the data extraction for the research was done through an application provided by
Linet written in C#. To correctly understand the data extraction process, it was necessary
to reverse-engineer the application and carefully examine the acquired data. A decompiling
tool for .NET applications dotPeek was utilized for this matter [17].

Unfortunately, the documentation of the code was also somewhat incomplete, and so
unresolved parts remain. However, they are mostly not relevant for this thesis.

To communicate with the bed, the port needs to be set with various parameters inherited
from Linet’s original application. The backend is provided by Python’s pySerial [18], a
module that assures a port communication.

The following code carries out the communication:

1

2 import serial
3

4 COM_PORT = ’COM3’
5 PORT_TIMEOUT = 10
6

7 try:
8 port = serial.Serial(COM_PORT , baudrate =38400 , bytesize=serial.

EIGHTBITS ,
9 parity=serial.PARITY_NONE , stopbits=serial.STOPBITS_ONE ,

10 timeout=PORT_TIMEOUT)
11

12 # If port is already used/wrong port.
13

14 except serial.serialutil.SerialException:
15 print(’Specified COM port is already in use by another application or

doesn\’t exist.’)
16 exit(-1)
17

18

6

Chapter 3

Data

All data for the research had been previously acquired solely through Linet’s application due
to insufficient information about both communication protocol and data structure. Since a
satisfactory way of data collection existed and the research was adapted to it, it hasn’t been
top priority to resolve the unknown data structure. However, the part of this particular thesis
is an implementation of an online visualization, where working with raw data is unavoidable.
To be able to correctly convey the data, the whole procedure of the data acquisition needs to
be redone, even if it means having to deal with complications due to insufficient information.
That, of course, requires a clear image of the raw data and its structure that is described in
this chapter. Aside from reverse-engineering, the bed’s documentation [19] was also used as
the source of information for this chapter.

3.1 Structure description

Working with the obtained data in its raw binary form can be uncomfortable – especially
when the knowledge about the structure is unknown. For that reason, the acquired data is
converted into a hexadecimal form, utilizing its ability to contain a byte in exactly two
hexadecimal digits. The form is also easier to process and read by a human which is
beneficial when manual inspection is unavoidable. Due to its compactness and readability
(for a human), it was decided to be a more suitable choice to work with. Hexadecimal form
will also be preferred when mentioned in plain text for the reader’s comfort.

The information about the structure was obtained from the reverse-engineered application,
documentation and observation of data flow. The description is following:

7

CHAPTER 3. DATA 3.1. STRUCTURE DESCRIPTION

1 Opening delimiter of message
2 7E - BEGIN
3

4 Message header
5 13 - protocol version and message type
6 17 - message ID
7 00 90 - message size
8 01 - data type
9

10 Data block begins here.
11 Each data packet consists of an ID and value/values.
12

13 Value of el.current, state of bed, etc.
14 01 00
15 02 00
16 03 00
17 04 00
18 05 00
19 06 AB
20 ...
21

22 From ID 80 the values are sent in two bytes
23 More state of bed values
24 80 00 00
25 81 00 00
26 82 00 00
27 83 02 F9
28 84 02 A5
29 85 03 66
30 86 03 5F
31 87 00 B1
32 88 00 00
33 89 00 05
34 8A 00 04
35

36 8B 05 E8 - absolute weight
37 8C 00 23 - center of gravity X
38 8D 27 F8 - center of gravity Y
39

40 Strain gauge values (Gauge factor)
41 8E 83 22
42 8F 83 7D 1A
43 90 84 AF
44 91 85 56
45

46 Some other values, currently not interesting
47 97 18 88

8

CHAPTER 3. DATA 3.2. DATA PROCESSING

48

49 Used for verifying data integrity after data transfers,
50 not used but potentially interesting
51 89 6B - CRC checksum
52

53 Ending delimiter of message
54 7E - END

Listing 3.1: Data structure

It should be noted that the message structure is very specific. Observation also revealed an
occasional exception in the number of arriving bytes as is shown in the listing 3.1 section
Strain gauge values (Gauge factor). The occasion also always seemed to include a
presence of byte 7D. Ultimately, additional research revealed that the reasoning of this
specific structure and additional bytes in the packet lies within Point-to-point protocol
(PPP).

According to RFC1662 [20], the Point-to-Point Protocol (PPP) provides a standard method
for transporting multi-protocol datagrams over point-to-point links. The protocol enforces
the following:

• Flag Sequence 0x7E implying the beginning or end of the frame

• Escaping byte 0x7D (byte stuffing)

• Whenever an escape byte or flag is encountered in the message, it is escaped by 0x7D
and a bitwise XOR is performed on the byte and 0x20.

It was clear that if the data packet arrived in such manner, the implementation of the receiver
had to adapt as well. The PPP pointed out byte stuffing by 0x7D, that clearly needs to be
de-stuffed by our receiver. That is, of course, not the only issue that needs to be discussed
further as two more issues regarding data had to be resolved – endianness and signed
number representation. The following section addresses these topics more extensively.

3.2 Data processing

This section focuses on additional work with the newly acquired data and discusses the
previously mentioned issues. The procedure of processing and filtering uninteresting parts
of the message structure is also addressed, as well as the correct representation of the data
flow, a crucial part to any kind of advancement in the thesis task.

9

CHAPTER 3. DATA 3.2. DATA PROCESSING

The following code manages receiving of data:

1

2 global receiving
3 receiving = true
4

5 while receiving:
6 message = port.read_until(b’\x7e\x7e’).hex()

The usage of global variables is most of the time considered risky. It is rightfully criticized
for side-effects, illegibility and having destructive properties in the debugging stage. In this
case, the variable needed a considerable scope for the present threads to see, while having
the ability to be changed from within. Since the number of threads is small and the script is
not extensive, it was decided not to complicate the implementation further. Clearly, there is
no doubt that in the future, a better object design will be created.

The piece of code utilizes the already known information about the data structure – it reads
the incoming message until an ending separator is found. The data structure 3.1 explained
that 7E was a beginning and ending flag. The conversion to hexadecimal form was also
done at this level by calling function hex() right as the data was obtained. After that, one
could easily filter the desired values through regular expressions.

Section 3.1 familiarized us with the data structure and hinted on three particular issues that
are discussed in the following subsections.

3.2.1 Endianness

Endianness is a method for storing values that exceed the capacity of one byte. There are
two conflicting basic formats based on the order of most and least significant bytes.

The big-endian format stores the most significant byte first and the least significant byte
last. The big-endian format is frequently dubbed as network (byte) order due to the
agreement of the network community. Little-endian uses the opposite approach, storing
the least significant byte first and the most significant last. The format is particularly utilized
in microprocessors [21].

The research experimentally established that the smart bed uses the big-endian format,
which was later confirmed after the decompilation of the Linet’s original application.

In the proposed script, converting values into the big endian format is a part of a function
to_16bits(byte1, byte2) that is responsible for transforming byte streams into actual
values for the respective attributes.

10

CHAPTER 3. DATA 3.2. DATA PROCESSING

The following code handles the endianness:

1

2 if BYTE_IS_BIG_ENDIAN:
3 result = 256 * byte1 + byte2
4 else:
5 result = 256 * byte2 + byte1

Let us put bytes byte1 and byte2 alongside each other – the most significant byte’s lowest
bit would start at the value of 28. Knowing this, the significant byte in its decimal form is
multiplied with value for the lowest bit of the byte (256 in decimal). Ultimately, the other
byte in its decimal form is added to this value.

If the condition is fulfilled, the result is produced by multiplying variable byte1 first, clearly
because it was evaluated as the significant byte. Else, byte2 is set to be the significant byte.

3.2.2 Signed number representation

Since numbers in computers are portrayed as sequences of bits, a signed number
representation is means of interpreting a negative sign within the sequence. There are
numerous methods of representation, from which computing devices use twos’ complement
in most cases.

The research experimentally established that bytes were signed, which was later confirmed
with the Linet’s original application. The code written below is again a part of a function
to_16bits(byte1, byte2). The following part handles the signed number representation
section:

1

2 if BYTE_IS_SIGNED:
3 if result > 32767:
4 result -= 65536
5 return result

The representation of the biggest number in 16 bits would logically hold the first bit as a
sign and the next 15 bits as ones (32767 in decimals). Any value higher than that must have
accounted the 16th bit (the sign) as part of the value itself. Such value must be therefore
inverted, done by subtraction of 16 bits of all ones (65636 in decimal).

The fact whether the byte is signed or unsigned plays a significant role in the final result.
The table 3.1 shows an attempt to convert bytes 7E 7C into a decimal value with both
representations.

11

CHAPTER 3. DATA 3.2. DATA PROCESSING

7E 7C

Unsigned 32380
Signed -33156

Table 3.1: Signed and unsigned bytes 7E 7C

It should be noted, that both endianness and signed number representation are dependent
on each other. The priority is to correctly convert the binary representation of the value into
a single decimal value and only after that, the program can consider the value’s sign.

Bytes from the hospital bed are then obtained in a big-endian format, and they are signed.

3.2.3 Byte stuffing

Byte stuffing is utilized in situations of maintaining values of delimiters as part of the message.
Data packets can be sent in varying sizes, where keeping amessage delimiter or amessage
flag becomes necessary. However, there are situations where it is desired to keep the flag as
a part of the message packet. The delimiter therefore needs its own escape token, which is
exactly what byte stuffing implements.

Byte stuffing is then a method to differentiate between data and a message delimiter (flag).
A stuffing byte is inserted in front of the problematic part, causing the receiver to treat the
following as data and not as a flag.

In section data structure 3.1, the PPP protocol has been introduced. It behaved in such way
that whenever an escape byte or a flag is encountered in the message, it is escaped by 0x7D
and a bitwise XOR is performed on the byte and 0x20.

On the receiving end, escaping byte is destuffed, and bitwise XOR is performed on the
following byte and 0x20. A following example can be observed:

1 Hex Bin
2 0x5E 1011110
3 0x20 0100000
4

5 XOR 1111110 -> 0x7E

The product of the bitwise XOR is again the value 0x7E.

12

Chapter 4

Data visualization

Chapter 2 has introduced strain gauges and their dimensionless values gauge factors. Even
after establishing a formal equation for them, it is still quite difficult to process their meaning
as they have no dimension and so important conclusions cannot be drafted from observing
individual values by themselves. Strain gauges effectively preserve information about
physical aspects of the subject placed on the bed if all four of them are considered. The set
of values is mostly different depending on external stimuli – a sitting position would generate
a different set of values than a lying position. For effective projection of the information, the
research uses visualization tools for better understanding.

The goal of data visualization in this research is to ease recognition of interesting aspects
in data. Graphs can be visualized either offline – a method of visualizing a precollected
set of data, or online – real-time visualization with updating values. In this thesis, we will
focus on an implementation of a real-time (online) visualization, bringing a new tool for the
hospital bed research in form of two types of graphs:

Line plots represent each gauge factor itself in its absolute value. All four graphs are plotted
into a single figure, allowing the perception of each sensor in real-time. Since the graph
presents all the absolute values at once in current time it is computationally demanding. Its
advantage is simplicity, demonstrating the gauge’s functionality well without the need for
further explanation. Compared to scatter plots, it only holds information about the gauge
factor’s absolute value.

Scatter plots are more expressive, and their features are heavily utilized in this project.
They have proven to be beneficial in finding correlation between plotted variables, making
it easier to notice characteristic attributes in data. They transfer a lot of information in
a short amount of time, and for this project, they represent the best visualization option.

13

CHAPTER 4. DATA VISUALIZATION 4.1. TOOLS

Since it is naturally more challenging to follow them at first, a bar plot has been created in
addition for a signal feedback check.

4.1 Tools

Python provides many libraries for data visualization, the most popular one being
matplotlib, an open-source 2D plotting library that is designed to bear resemblance to the
environment of MATLAB [22]. It was chosen for being well supported, stable and powerful.
It also works well with other libraries for data processing like pandas.

This implementation utilizes matplotlib’s similarity to MATLAB with module Pyplot.
One of their common features is an ability to access a current figure and axes of figure.
Compared to the object-oriented version of the library, its strength lies within automation
of interaction with the graph and its unnecessity to hold references to graph objects
since the module does it internally.

Pyplot offers many useful operations and ones that were used in this implementation are
following:

• creating a figure,

• adding multiple graphs to a figure,

• labeling individual graphs and their axes,

• plotting various types of graphs,

• handling user events (clicking, typing, etc.),

• updating data in a graph,

• styling,

• user interaction control elements (such as buttons),

• setting a view range,

• setting ax scales (logarithmic, linear, etc.).

4.2 Implementation

This section describes implementation parts of the visualization that were somehow
intriguing, either because of their custom-built nature or tricky character. It is not an
objective of this thesis to serve as Pyplot or matplotlib documentation. Moreover, the

14

CHAPTER 4. DATA VISUALIZATION 4.2. IMPLEMENTATION

basic functions used to plot the graph are mentioned in the previous section 4.1. Therefore,
trivial parts will not be commented further. Scripts can be later found attached to the thesis.

Implementation was done in two different scripts, the line plot serving as an introductory
prototype to the scatter plot. The priority of the project was always the implementation of
an online scatter plot which holds an important purpose with intentions to use it for pattern
recognition. Nevertheless, both graphs are valuable for different purposes and have their own
advantages. Implementations have a set of parameters listed in the beginning of the script
for easier editing.

The common parameters for both graphs are following:

1

2 COM_PORT = ’COM3’
3 PORT_TIMEOUT
4 BYTE_IS_BIG_ENDIAN
5 BYTE_IS_SIGNED
6 LOG_FILE # text file that stores data sent from the bed
7 TENSO_LABEL # labels for strain gauges
8

9 # Graph view
10 LOWER_LIMIT/SCATTER_LOWER_LIMIT
11 UPPER_LIMIT/SCATTER_UPPER_LIMIT

The parameters for line plot are:

1

2 LINE_COLOR

The parameters for scatter plot are:

1

2 MARKER_ALPHA # transparency of a marker
3 MARKER_SIZE
4 MARKER_COLOR
5 MARKER_EDGE_COLOR
6 MARKER_HIGHLIGHT_COLOR
7 MARKER_LINE_WIDTH
8 MAX_NUM_OF_MARKERS_IN_GRAPH
9

10 MODEL_NAME # pattern recognition model
11

12 EMPTY_BED_VALUE # approximate values for gray cross plotting [LH, PH ,
LD , PD]

The following subsections about particular graphs might refer to these parameters.

15

CHAPTER 4. DATA VISUALIZATION 4.2. IMPLEMENTATION

4.2.1 Line plot

Line plot visualization did not contain any parts that were particularly tricky or challenging.
The objective was to plot the representation of gauge factors as signals as it is shown in
Figure 4.a.

Figure 4.a: Line plot

Its particular purpose is presentation of signal development throughout the time.
The plot’s x-axis represents the continuous time in seconds with view initially set to 30
seconds. The graph adapts whenever the view does not suffice by readjusting x-axes. The
line then reacts to changes in gauge values by motioning upwards or downwards on y-ax,
while progressing in time on the x-axis.

The time information is preserved through variables of initial time start_time and
its difference with current time delta. The x-axis shift is performed in the function
update_graph() by a trivial condition:

1

2 if delta > 30:
3 axes[i]. set_xlim(delta - 30, delta)

where axes[i] is one of the subplots in the figure.

The function that is responsible for line plotting is upgrade_graph() which is called within
matplotlib’s class FuncAnimation object that is used to set animation for a whole figure.
Its parameters consist of function object to call, the figure to animate and other optional
parameters such as interval, representing a function period in milliseconds.

16

CHAPTER 4. DATA VISUALIZATION 4.2. IMPLEMENTATION

1

2 animation = FuncAnimation(fig , update_graph , interval =200)

The function interval was set to 200 ms. A shorter span would have resulted in smoother
progress, however, it is redundant to do so as the graph would have to plot more frequently,
handicapping slower computers. Furthermore, new data packets might not have even arrived
in time if the interval was too small.

4.2.2 Scatter plot

Scatter plot represents a graph of correlation between two strain gauges, with each axis
responding to one of the four sensors chosen arbitrarily by the user. Compared to its
offline counterpart, online scatter plot allows real-time monitoring of data paths. That
enables easier perception of interesting attributes between two gauges, bringing new kinds of
information to the research.

Figure 4.b: Scatter plot

To make the observation more comfortable, the newest point is always red to distinguish
the newly added value. Points also have a set transparency through a parameter
alpha=MARKER_ALPHA to deal with overlapping, allowing the user to see the point outlines
instead of an incoherent clutter. If points remain at the same place, each update increases
saturation, so these areas are easier to notice. These features can be viewed in figure 4.c.

Another feature to ease the plot’s readability is highlighting areas of resting gauges.
That is marked in the graph by a gray cross which can be observed both in 4.b as in 4.c.
Since values for the empty bed are different for each gauge (interestingly), it is necessary
to re-plot the gray cross with every change of the strain gauge (in user induced events).

17

CHAPTER 4. DATA VISUALIZATION 4.2. IMPLEMENTATION

Figure 4.c: Saturation representing density of points

That is done through a script function change_axempty() that calls matplotlib functions
axvline() to plot a vertical line and axhline() for a horizontal one. Since the functions
don’t automatically access the original lines and make a new line whenever they are called, it
was decided that removal of the originals before re-plotting new ones was the easiest approach.

It might seem strange that empty values sometimes move around and are not absolute. That
is due to numerous external inputs such as the imperfection of strain gauges, environment,
mattress shift, etc. The online visualization also revealed that the sensors undergo hysteresis
of some kind and are never completely at rest. This phenomenon can be observed by using
a zooming tool at a plotted point.

Which two of the gauges will be plotted is chosen through a click event. The click event is
assigned to a particular button by matplotlib’s function on_clicked(arg). It should be
noted that the expected argument is a function and not a function call. The latter would
evaluate the function right away, returning its result which wouldn’t be callable from the
inside of the on-click function. This issue is resolved by using lambda expression’s lazy
evaluation in the argument:

1

2 x_button.on_clicked(lambda x: change_axempty(x_button , data_selector ,
True))

3 y_button.on_clicked(lambda y: change_axempty(y_button , data_selector ,
False))

The range of values to display on the graph is set manually using parameters
SCATTER_LOWER_LIMIT and SCATTER_UPPER_LIMIT based on empirical experiments. The
automatic range that matplotlib deduced proved to be problematic due to insufficient
number of data instances during the initialization. Limits are originally set closely around
the very first data point, and any significant change would be plotted outside of the scope.
It was considered to recalculate the limits dynamically, however, that would result in visual
shift of all currently visible points. That would decrease the graph’s legibility dramatically

18

CHAPTER 4. DATA VISUALIZATION 4.2. IMPLEMENTATION

because of its real-time nature. Should the observer deem change of the scope necessary, the
parameters can be edited easily.

Data acquired from the bed is stored in a CSV format file for later use, however, it is not
desired for the graph to be overcrowded with values as it would decrease its legibility. For
this reason, a parameter MAX_NUM_OF_MARKERS_IN_GRAPH has been added to set a maximum
number of points that can be seen at time.

1

2 MAX_NUM_OF_MARKERS_IN_GRAPH = 15
3 # ...
4 if len(data) == MAX_NUM_OF_MARKERS_IN_GRAPH:
5 data.pop(0)
6

7 data.append(data_packet [3:])
8

Update of the scatter plot is done every time a data packet arrives through the script’s
function update_graph(). At first, the whole Axes object was reinitialized, discarding user’s
interaction such as zooming in on the scatter plot. A lot of redundant operations were also
performed because of that, resulting in computational heaviness. This approach has been
replaced by changing the offsets of the points by matplolib’s function set_offset() called
on the scatter plot’s data path. This way, the user interaction remains unchanged, graph is
plotted only once, and only the path gets updated.

When deciding on the most suitable visualization composition for the scatter plot, many
other possibilities were explored. The following section discusses a few of those visualization
tools that were deemed interesting for this subject.

19

CHAPTER 4. DATA VISUALIZATION 4.3. DISCUSSION

4.3 Discussion

4.3.1 Visualization in higher-dimensions

One of the most common concerns in data visualization is the representation of multi-
dimensional data. While human perception processes up to three dimensions, visualization of
more than two attributes begins to cause trouble due to the limitations of a computer screen.
Useful off-the-shelf solutions exist such as feature selection, feature extraction and manifold
learning. Some projects, as this one, need the data to be projected as it is. Although it might
seem strange to discuss graph representations for sole 4 dimensions, there might be time in
the future that the research may need to add more attributes. Before settling for the scatter
plot, various methods were explored to find the most suitable possibility.

Paper [23] has suggested to express higher-dimensional values by glyphs. These graphical
entities represent data through specific features such as shape and size. To a certain point,
glyphs can be implemented in matplotlib through a previously mentioned graph attribute
marker. Markers can be set in various shapes, sizes, colors, and transparencies. Glyphs
would manage to present all four gauge factors at once, allowing to see correlations between
all gauges. However, a question remains if it is always possible for a human to process the
information given to them in such state in real time.

Representing multi-dimensional data through bubble plots holds a similar idea but simpler,
shedding the shape attribute. The graph projects up to 6 dimensions, representing the higher
dimensions as sizes and colors [24]. Even though such method does not seem to hinder the
comprehension too much, the trial version showed that any kind of graph that has more than
2 attributes is not very suitable for a real-time updating visualization tool. Example of the
bubble plot visualization where strain gauge 91 (145 in decimal) was represented as size can
be seen in figure 4.d.

A scatter matrix was the last option considered before settling with the current composition.
It projects each attribute against each, creating six graphs and their inversions into one figure.
Since it uniformly holds 12 graphs, scatter matrices are computationally demanding due to
the real-time update of all 12 subplots. The small size of each subplot was also uncomfortable
to handle, even after utilizing the zooming tool. Visualization of the scatter matrix can be
seen in figure 4.e

20

CHAPTER 4. DATA VISUALIZATION 4.3. DISCUSSION

Figure 4.d: 4D bubble plot example

.

Figure 4.e: Scatter matrix example

21

Chapter 5

Activity detection

Chapter 4 visualized gauge factors for easier understanding of their functionality. As the
reader has a better idea of how gauges react to stress and strain, the fact that different
strain distribution results in a different set of values should be now apparent. This chapter
concentrates on utilizing machine learning algorithms to classify states on the smart hospital
bed. The ultimate goal is to recognize various states in real time.

5.1 Classes of activities

This section discusses activities that a patient can perform on the bed, from the typical
activities to the complex ones. Let us divide the activities into two types.

Activities that are deemed typical are lying, sitting and empty bed. Lying is divided into
right log, left log and supine. The respective positions are shown on figures 5.a to 5.d
below, except for the empty bed.

Figure 5.a: Position sitting Figure 5.b: Position supine

22

CHAPTER 5. ACTIVITY DETECTION 5.2. CLASSIFICATION

Figure 5.c: Position right log Figure 5.d: Position left log

Activities that are deemed complex are fall, sleep, seizure and violation of the work
procedure. During the research, these activities have been discussed but with the current
available tools, it is not assumed that all the complex activities would be recognized with
a satisfactory result. It would require measurements taken for a particular period of time
to design a feature vector. Moreover, published researches that were done on such activities
had used a different set of equipment and never just strain gauges by themselves. It is not a
purpose of this thesis to resolve pattern recognition for these complex classes yet but surely,
experimenting with these classes would prove beneficial to the research.

5.2 Classification

One of the well-known pattern recognition approaches is classification – a process of
assigning data into classes based on its previous training on an already labeled data set.
The training can be solved using supervised learning methods [25], [26].

The classification is performed for the typical activities listed in the section 5.1 which
implies that it deals with a multiclass classification. It should be noted that classification
of multiple classes is handled differently than its binary peer. Let us present a few approaches
for a multiclass classification problem in the following paragraph.

Instead of letting an algorithm classify multiple classes at once, the problem is transformed
into several binary classification problems. One of the strategies that is used for this
matter is one-vs.-rest (OvR) where each class has its own trained classifier that deems
that particular class 1 and the rest 0. Even though paper [27] wrote about its potential
effectiveness, the method faces many troubles such as having to deal with unbalanced
distribution of classes. Even if originally, the data set is balanced, the method will see
many more 0 than 1. An alternative method is one-vs.-one (OvO) which trains N(N−1)

2

classifiers for each different pair of labels. OvO is less prone to unbalanced data sets but it
is also much more computationally demanding [28].

23

CHAPTER 5. ACTIVITY DETECTION 5.2. CLASSIFICATION

Another method is to train a classifier that is naturally suitable for solving a multiclass
classification problem. This thesis follows that approach, utilizing Python’s well-known
machine learning library scikit [29]. The considered algorithms are compared and discussed
below:

Naive Bayes (NB)

A simple probabilistic classifier based onBayes’ theorem that always assumes independence
between features, disregarding their relation. It uses maximum a posteriori (MAP)
principle to predict association to a certain class. Despite its naive assumption, it is a
valuable and effective machine learning algorithm as shown in Zhang’s article [30] in 2004.
Multiclass classification is naturally easy for NB as it calculates the probability of each class
label and selects the one with the highest probability. [31]

Since the feature in our data is continuous, Gaussian distribution of likelihood is assumed.

K-nearest neighbours (k-NN)

The k-NN is one of the most trivial machine learning algorithms. Its prediction operates
on assigning new data instances to the most common class between k most similar data
instances. Typically, the similarity of two data instances is based on their distance. It falls
under instance-based learning category for predicting new instances by comparison to the
ones in the testing data set. That being said, the absence of learning is clear in k-NN, making
it a lazy learning algorithm. The model representation is therefore the whole training set
which proves troublesome with a growing data size. Its high memory requirement can be
addressed by editing the training set as removing outliers and updating new values. [31]

Support vector machine (SVM)

A non-probabilistic typically linear classifier that is based on maximization of distance
between classes (margin) creating an optimal hyperplane. The optimal hyperplane is
represented by the following equation:

|β0 + βTx| = 1, (5.1)

where β is a weight vector, β0 is bias and x are instances closest to the hyperplane in training
data set – referred to as support vectors.

This representation is called a canonical hyperplane. Computation of optimal hyperplanes
presents a dual problem that is solvable through algorithms in quadratic programming [32]
[31].

24

CHAPTER 5. ACTIVITY DETECTION 5.2. CLASSIFICATION

As kernel for the SVM model, the radial-basis function was chosen due to its flexibility and
stable performance.

Decision tree (DT)

An intuitive machine learning algorithm that makes sequential decisions in order from the
most important node, acquiring the class value of a new instance from leaves. Nodes and
leaves can successfully keep information allowing to compute various class probabilities. DT
is often used due to its interpretability and similarity to human decision making. Trees
are naturally prone to overfitting and so several methods for better generalization are
introduced, such as pruning or combining multiple DTs making a decision forest [31].
Utilizing how DT classifies data by information entropy, centers of mass were added to the
set of features to improve the performance of all classifiers.

25

CHAPTER 5. ACTIVITY DETECTION 5.2. CLASSIFICATION

5.2.1 Data set acquisition

Training the model for online classification was done on a data set measured on subject H.
The measurement procedure is following – subject is placed in a certain position on the bed
for 60 seconds, then the bed is left empty for 30 seconds. The process is then repeated
5 times, getting a total of 5 minutes for each position. It should be noted that the
training data set contains various sitting positions such as sitting in the middle of the bed,
on the sides, etc. For such reason, the data acquisition for sitting particularly needed to be
altered which can be viewed in the appendix A.2.

Procedure
Position 60s
Empty bed 30s
Position 60s
Empty bed 30s
Position 60s
Empty bed 30s
Position 60s
Empty bed 30s
Position 60s

Table 5.1: Data set acquisition procedure for one posture

The reason why the measurement procedure was designed this way is to achieve data set
robustness. Since it is impossible for a person to place themselves in the same exact position
as before, making the subject repeatedly position themselves within the same measurement
provides the classifier with more possibilities of how a position might look like. If the recorded
data is only made of a subject in one exact position for 5 minutes, the model used in online
detection would probably not be able to recognize slight changes and shifts, making the
model unusable. Classifiers would be basically testing data very similar to the training ones
if not identical, leading to misleading accuracy.

5.2.2 Preprocessing

The attributes used to train the model are 4 strain gauge factors and center of mass
on both axes. It should be noted that their values differ immensely as values of strain
gauges are always around -31 000, while centers of mass are around 100. It was decided that
normalizing the data to scale -1 to 1 would be used as it gave the best performance out
of other normalization methods.

The data set also contains ambiguous parts where the subject is not yet in position. Since
there is no point in trying to classify those kind of values into predetermined classes, they
were removed from the data set.

26

CHAPTER 5. ACTIVITY DETECTION 5.3. RESULTS

5.2.3 Performance estimator

To measure a classifier’s performance, a version of k-fold cross validation (KfCV) was used
to estimate the accuracy of each classifier. The estimator parts the data set randomly into k
disjunctive subsets with identical length, a model is trained using k−1 folds as training data
and tested on the remaining fold. Compared to hold-out method that simply splits data
into training and testing set, KfCV achieves less biased estimations and combats overfitting.
It is also suitable to use on small data sets because of its unwasteful approach of using the
whole data set for both testing and training. On the other hand, its price comes with its
computational demands that is dificult to meet with bigger data sets.

Stratified k-fold cross validation (SkCV) is a version of KfCV that ensures that
proportions of classes in particular folds are similar to the proportion of classes in the original
data set. Since our data set is not perfectly balanced, SkCV represents a more suitable
performance estimation method. It was decided to set the recommended k = 10.

5.3 Results

In terms of total accuracy, 1-NN showed the best performance with accuracy rate of 97%,
while SVM followed closely behind with 96.3% and DT with 96.1%. NB had the worst results
but still managed to get 92.9%. However, since the data is slightly unbalanced, the total
accuracy can be misleading with the classifier preferring majority class. For that reason, the
following tables also present results in a form of classifier errors for each class providing more
detailed information about performance on each class (similarly to sensitivity and specificity
in binary classification).

The cross validation estimates of class error rates for subject H can be found in table 5.2.

Empty Sitting Supine Right log Left log

1-NN 0.0 0.13 0.02 0.02 0.0
GNB 0.05 0.22 0.03 0.03 0.03
DT 0.0 0.06 0.08 0.02 0.01
SVM 0.0 0.15 0.03 0.02 0.01

Table 5.2: Class error rates of each classifier on each position (subject H)

Algorithm 1-NN was able to recognize all instances of an empty bed and left log. Sitting
caused quite a difficulty to detect, mainly because of the similarity between sitting in the
middle of the bed and supine. Since other k-NN did not reach better results, they are not
currently mentioned. Out of the compared classifiers, NB had the biggest problem with
classification of the sitting position. It was able to detect left log with small mistakes,

27

CHAPTER 5. ACTIVITY DETECTION 5.3. RESULTS

surprisingly having the second highest error rate on class empty. Decision tree was able to
perfectly recognize an empty bed while having problems with classes supine and sitting, with
supine having the highest error rate. Support vector machines had the same performance
with empty and left log like DT. Again, sitting had the highest error rate.

In conclusion, classes that are the easiest to recognize according to the error table are empty
(except for NB), left log and right log. The classifiers often struggled with classes sitting
and supine due to the similarity of these two positions in case of sitting in the middle of the
bed. It is important to remind that the results are computed for one selected subject and
inter-personal variability is ignored. The ability of classifiers to classify postures of subjects
that it has never seen before is presented in chapter 6.

5.3.1 Discussion

The results showed that all classifiers except for DT, had the highest error rate with class
sitting. DT had the highest error rate with class supine, which is an analogous situation. Let
us look at the features used for classification visualized in graphs:

Figure 5.e: Centers of mass of subject H

As can be seen from graphs 5.e and 5.f, the data is not linearly separable. Instances where
the subject sat on the edge of the bed (well separated green clusters), left the bed empty
(red points) and was in position left log (pink clusters) were understandably the easiest to
recognize. Zooming into the area of values for supine and sitting in figure 5.g shows that the
data position is a quite peculiar but not entirely inseparable.

28

CHAPTER 5. ACTIVITY DETECTION 5.3. RESULTS

Figure 5.f: Gauge factors 8E, 8F and 90 of subject H (3D)

Figure 5.g: Detailed view of inseparable supine and sitting in figure 5.f

Figure 5.f omitted the strain gauge for clarity of the 3D graph. For a scatter matrix graph
where all strain gauges are plotted against each other, see figure A.1 in appendix A.

29

Chapter 6

Online detection

Online detection is the primary goal of the pattern recognition part. Our intention is to
propose and implement and online position recognition system. The result of such recognition
should be reported to the user in the graphical user interface described above. Currently, it
is sufficient to show a text string describing the posture. This will appear in the same vindow
as the scatter plot and bar diagram visualization.

6.1 Implementation

Trained classification models are exported into a binary file included in the scatter plot
visualization script. The model’s function predict() returns its result as a number
representing the predicted class corresponding to a position. The name of the position is
printed in the top-right corner of the figure as showed in figure 6.a.

Figure 6.a: Online visualization with posture classification

30

CHAPTER 6. ONLINE DETECTION 6.2. CLASSIFICATION MODEL

1 classifier_result = model.predict(arg)
2

3 # Interpreting class values as position
4 if classifier_result == 0:
5 label = ’empty ’
6 elif classifier_result == 1:
7 label = ’sitting ’
8 . . .

A parameter MODEL_NAME that was previously mentioned in the visualization chapter 4 was
added for easier manipulation with the classification model. Module pickle [33] was utilized
for import and export of Python objects.

It is also necessary to normalize the newly received data due to the previous normalization
on the training data. Compared to the offline classification, the online detection does
not have access to its training set – it only uses an imported classification model for
predicting. The normalization; however, needs the training set’s min and max values
in order to scale the incoming data properly. Those values are obtained by importing
an original library normalize and calling its function init() which loads maximal and
minimal values of the training data set from a CSV file. The scatter plot visualization script
calls normalize.init() to correctly set the minimal and maximal values before calling the
function predict.

1 # Data normalization
2 normalize.init()
3

4 for i in range(0, 6):
5 # normalize . . .

6.2 Classification model

Testing of the online detection system is done on 5 subjects of different weight and
constitution. The intention is to experiment with a model trained on one subject and
examine its functionality on the other 4 subjects. For that reason, a subject P with the
average weight and height was chosen, measured according to the procedure 5.1 and the
model was trained on data set of subject P. The all-over accuracy of the subject is listed in
the appendix A.1. The error rate of 5-NN was also added for the online detection purposes.

Compared to the data set of subject H this data set does not seem to have problems with
supine and sitting. Its visualization, graphs A.2 and A.3 show that the data set of subject P
is more easily separable than the one listed in results.

31

CHAPTER 6. ONLINE DETECTION 6.3. EXPERIMENT

Empty Sitting Supine Right log Left log
1-NN 0.0 0.01 0.01 0.09 0.0
5-NN 0.0 0.15 0.02 0.02 0.01
NB 0.02 0.01 0.03 0.04 0.03
DT 0.01 0.13 0.03 0.03 0.02
SVM 0.0 0.02 0.03 0.03 0.01

Table 6.1: Class error rate of each classifier (subject P)

After some initial testing it was decided that classifiers NB and DT will not be considered
for the online detection experiment. Despite NB showing better results with subject P, it
did not seem to perform well in comparison with others. DT was not chosen for the same
reason.

The rest of the classifiers were trained and applied onto the visualization script. Prior to
experiments, the following was expected:

H1 1-NN will be too sensitive to noise, might have to try i.e. k = 5,

H2 SVM will be the most reliable,

H3 classes ’supine’ and ’sitting’ (in the middle of the bed) might cause problems,

H4 small quantity of strain gauges will cause excessive reliance on position placement rather
than position itself,

H5 more frequent misclassification of postures on foreign subjects can be expected,

H6 the missclassification rate will increase with bigger difference in constitution and weight.

6.3 Experiment

The classification model was trained on subject P. The experiment consists of testing the
model’s functionality on subjects of various weights and constitutions, particularly subject
G, subject H, subject D and subject M. See information about subjects in the table 6.2.

Subject Weight Height
Subject G 40kg 150 cm
Subject H 55kg 165 cm
Subject P 65kg 173 cm
Subject D 78kg 176 cm
Subject M 109kg 190 cm

Table 6.2: Subject weights and heights

32

CHAPTER 6. ONLINE DETECTION 6.3. EXPERIMENT

Through testing, it was confirmed that even if the model performed well in the results, it
does not mean that it is automatically suitable for online detection. Although in an offline
environment 1-NN performed well, its absence of learning and high memory requirement
makes it inappropriate to use in practice. It is also slow, compared to other classifiers,
which is understandably an undesirable trait in online detection. The assumption H1 was
confirmed to be true. Even though in offline environment, 1-NN performed better than other
k-NN where k > 1 in the offline results, using only 1 neighbor is dangerous as the algorithm
will be much more prone to noise. It was also prone to overfitting to positions on the bed,
e.g. even small shifts caused confusion for the model.

By increasing k = 5, its performance in online detection improved but it was still lacking in
comparison to SVM.

Hypothesis H2 proved to be true as SVM was able to detect all postures from the subject
it was trained on. Moreover, it was also able to effortlessly recognize all postures of subjects
G and subject H.

On the other hand, assumption H3 was proven false as all three classifiers were able to
differentiate between sitting and supine without much trouble. However, all of the classifiers
seemed to be somewhat too dependent on the position placement. The classes that caused
trouble with some subjects were sitting and right log and the problem seemed to be more
apparent with subject M, misclassifying logs as sitting and vice versa. SVM seemed to cope
with the issue the best, which might be due to its generalizing properties.

That confirms the theory H4. A higher number of strain gauges would allow a better grasp
of underlying features. The introductory section 1.4 mentioned researches utilizing pressure
mats with more than 1000 sensors, even allowing pressure point visualizations.

Even though H5 is a fact, the experiments with SVM-trained model surprisingly reached a
better result than expected. The model was still able to somehow detect positions of subject
D and even subject M that was 44 kg heavier than subject P (although having significantly
more difficulties to do so). Subjects that were smaller and lighter were recognized correctly
even in an unusual setting. Compared to subject H and G, subjects D and M did not have the
freedom to move around in positions without it resulting in misclassification, confirming the
theoryH6. There was no observation of height somehow affecting the classifier’s performance.

The experiment showing the functionality of the online detection system on all subjects is
recorded on a video attached to the thesis.

33

Chapter 7

Conclusion

The goal of the thesis was to build bases for the smart bed monitoring tool development,
implement a real-time visualization tool and to create an online posture detection system.

Reaquiring the information about the data structure and communication was done through
reverse-engineering the bed’s existing software of data acquisition and thorough examination
of documentations. The knowledge was then applied into the implementation of real-time
visualization tools in a form of a line plot and scatter plot. The line plot was created
to examine the signal behavior, while the scatter plot was developed to examine relations
between attributes. The chapter also explores various approaches for visualization in
higher dimensions. The online detection system was integrated into the scatter plot,
showing the prediction at the top right corner of the figure.

Firstly, the classifiers were evaluated on subject H with 1-NN reaching the best all-over
result of 97% accuracy. Since the classes are not perfectly balanced, the all-over accuracy
can be somewhat misleading and so error rates for each class were computed. The class error
rates consistently showed, that the most problematic classes were sitting and supine. The
testing was done on subject P as well, again showing the best results for algorithm 1-nearest
neighbour (1-NN). Interestingly, frequent overlapping of classes sitting and supine did not
occur on the data set of subject P.

To test the online classification system, an experiment consisting of 5 subjects was conducted.
The classification model was trained on a subject of average height and weight, subject P
(65 kg) and tested on the rest. The experiment showed that model trained on SVM was able
to effortlessly recognize postures of subjects G (40 kg) and H (55 kg), while clearly having
more difficulties with subject M (109 kg). Nevertheless, the model was still somehow able to
recognize most of the postures.

34

CHAPTER 7. CONCLUSION 7.1. FUTURE RESEARCH

7.1 Future research

The future plans for the research are to continue working on various activity detection
problems, like the ones mentioned in the section 5.1. Due to the newly acquired independence
from Linet in terms of data collection, the research can now easily implement different
approaches that were previously not suitable. It might be even possible to finally utilize
the bed’s technology to also enforce an automatic response or trigger an alarm.

In terms of the thesis, the future intentions are to develop a better object-oriented design for
the current scripts and to create a full-fledged user friendly software. That would hopefully
help to create a tool for new projects that will one day contribute to the scientific community.

35

Bibliography

[1] D. Sánchez, M. Tentori, and J. Favela, “Activity recognition for the smart hospital”,
IEEE intelligent systems, vol. 23, no. 2, pp. 50–57, 2008.

[2] H. H. Nguyen, “Advanced assistive control strategies for smart hospital beds”, PhD
thesis, 2016.

[3] A. Sivanantham, “Measurement of heartbeat, respiration and movements detection
using Smart Bed”, in 2015 IEEE Recent Advances in Intelligent Computational Systems
(RAICS), IEEE, 2015, pp. 105–109.

[4] A. M. Adami, M. Pavel, T. L. Hayes, and C. M. Singer, “Detection of movement in bed
using unobtrusive load cell sensors”, IEEE Transactions on Information Technology in
Biomedicine, vol. 14, no. 2, pp. 481–490, 2010.

[5] W. SpillmanJr, M. Mayer, J. Bennett, J. Gong, K. Meissner, B. Davis, R. Claus,
A. MuelenaerJr, and X. Xu, “A ‘smart’bed for non-intrusive monitoring of patient
physiological factors”, Measurement Science and Technology, vol. 15, no. 8, p. 1614,
2004.

[6] J. Hao, M. Jayachandran, P. L. Kng, S. F. Foo, P. W. A. Aung, and Z. Cai, “FBG-based
smart bed system for healthcare applications”, Frontiers of Optoelectronics in China,
vol. 3, no. 1, pp. 78–83, 2010.

[7] L. Russell, R. Goubran, and F. Kwamena, “Posture detection using sounds and
temperature: LMS-based approach to enable sensory substitution”, IEEE Transactions
on Instrumentation and Measurement, vol. 67, no. 7, pp. 1543–1554, 2018.

[8] R. Yousefi, S. Ostadabbas, M. Faezipour, M. Nourani, V. Ng, L. Tamil, A. Bowling, D.
Behan, and M. Pompeo, “A smart bed platform for monitoring & ulcer prevention”, in
2011 4th International Conference on Biomedical Engineering and Informatics (BMEI),
IEEE, vol. 3, 2011, pp. 1362–1366.

[9] D. M. Smith, “Pressure ulcers in the nursing home”, Annals of internal medicine,
vol. 123, no. 6, pp. 433–438, 1995.

36

BIBLIOGRAPHY BIBLIOGRAPHY

[10] S. Rus, T. Grosse-Puppendahl, and A. Kuijper, “Recognition of bed postures using
mutual capacitance sensing”, in European Conference on Ambient Intelligence, Springer,
2014, pp. 51–66.

[11] V. Metsis, G. Galatas, A. Papangelis, D. Kosmopoulos, and F. Makedon, “Recognition
of sleep patterns using a bed pressure mat”, in Proceedings of the 4th International
Conference on PErvasive Technologies Related to Assistive Environments, ACM, 2011,
p. 9.

[12] C.-C. Hsia, Y.-W. Hung, Y.-H. Chiu, and C.-H. Kang, “Bayesian classification for bed
posture detection based on kurtosis and skewness estimation”, in HealthCom 2008-10th
International Conference on e-health Networking, Applications and Services, IEEE,
2008, pp. 165–168.

[13] S. Ostadabbas, M. B. Pouyan, M. Nourani, and N. Kehtarnavaz, “In-bed posture
classification and limb identification”, in 2014 IEEE Biomedical Circuits and Systems
Conference (BioCAS) Proceedings, IEEE, 2014, pp. 133–136.

[14] Linet s.r.o. (2015). Company Profile, [Online]. Available: http://www.linet.com/en/
about-us/company-profile (visited on 02/25/2019).

[15] Hannah, R.L. and Reed, S.E. and Society for Experimental Mechanics (U.S.), Strain
Gage Users’ Handbook. Elsevier Applied Science, 1992, isbn: 9780912053363. [Online].
Available: https://books.google.cz/books?id=ig64QgAACAAJ.

[16] Omega Engineering, Inc., The pressure strain and force Handbook, ser. Transactions in
measurements and control. Omega Engineering, Inc., 1999, vol. 3. [Online]. Available:
https://www.omega.com/literature/transactions/volume3/trantocvol3.html.

[17] JetBrains s.r.o., dotPeek: Free .NET Decompiler and Assembly Browser, ver-
sion 2018.3.3, Feb. 27, 2019. [Online]. Available: https : / / www . jetbrains . com /
decompiler/.

[18] C. Liechti. (2017). pySerial 3.4 Documentation, [Online]. Available: https : / /
pyserial.readthedocs.io/en/latest/pyserial.html (visited on 02/22/2019).

[19] LINET, Manuál k nemocničnímu lůžku LINET.

[20] W. Simpson. (Jul. 1994). PPP in HDLC-like Framing, [Online]. Available: https :
//tools.ietf.org/html/rfc1662#page-4 (visited on 02/22/2019).

[21] A. Tanenbaum and T. Austin, Structured Computer Organization. Pearson, 2013,
isbn: 9780132916523. [Online]. Available: https://books.google.cz/books?id=
m0HHygAACAAJ.

[22] J. D. Hunter, “Matplotlib: A 2D graphics environment”, Computing In Science &
Engineering, vol. 9, no. 3, pp. 90–95, 2007. doi: 10.1109/MCSE.2007.55.

37

http://www.linet.com/en/about-us/company-profile
http://www.linet.com/en/about-us/company-profile
https://books.google.cz/books?id=ig64QgAACAAJ
https://www.omega.com/literature/transactions/volume3/trantocvol3.html
https://www.jetbrains.com/decompiler/
https://www.jetbrains.com/decompiler/
https://pyserial.readthedocs.io/en/latest/pyserial.html
https://pyserial.readthedocs.io/en/latest/pyserial.html
https://tools.ietf.org/html/rfc1662#page-4
https://tools.ietf.org/html/rfc1662#page-4
https://books.google.cz/books?id=m0HHygAACAAJ
https://books.google.cz/books?id=m0HHygAACAAJ
https://doi.org/10.1109/MCSE.2007.55

BIBLIOGRAPHY BIBLIOGRAPHY

[23] M. O. Ward, “A Taxonomy of Glyph Placement Strategies for Multidimensional Data
Visualization”, Information Visualization, vol. 1, no. 3-4, pp. 194–210, 2002. doi: 10.
1057/PALGRAVE.IVS.9500025. eprint: https://doi.org/10.1057/PALGRAVE.IVS.
9500025. [Online]. Available: https://doi.org/10.1057/PALGRAVE.IVS.9500025.

[24] Y. Holtz. (c© 2017). Bubble plot, [Online]. Available: https : / / python - graph -
gallery.com/bubble-plot/ (visited on 03/09/2019).

[25] E. Alpaydin, Introduction to Machine Learning, ser. Adaptive Computation and
Machine Learning series. MIT Press, 2014, isbn: 9780262325752. [Online]. Available:
https://books.google.cz/books?id=7f5bBAAAQBAJ.

[26] T. Ayodele, “Types of Machine Learning Algorithms”, in. Feb. 2010, isbn: 978-953-307-
034-6. doi: 10.5772/9385.

[27] R. Rifkin and A. Klautau, “In defense of one-vs-all classification”, Journal of machine
learnnig research, vol. 5, no. Jan, pp. 101–141, 2004.

[28] C. M. Bishop, Pattern recognition and machine learning. springer, 2006, pp. 338–339.

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine Learning in Python”,
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[30] H. Zhang, “The optimality of naive Bayes”, AA, vol. 1, no. 2, p. 3, 2004.

[31] S. Shai and B. Shai, Understanding machine learning from theory to algorithms.
Cambridge University Press, 2014. [Online]. Available: https://www.cs.huji.ac.
il/~shais/UnderstandingMachineLearning/understanding-machine-learning-
theory-algorithms.pdf.

[32] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, 10.
Springer series in statistics New York, 2001, vol. 1.

[33] P. S. Foundation. (2019). Pickle: Python object serialization, [Online]. Available:
https://docs.python.org/3/library/pickle.html (visited on 04/20/2019).

38

https://doi.org/10.1057/PALGRAVE.IVS.9500025
https://doi.org/10.1057/PALGRAVE.IVS.9500025
https://doi.org/10.1057/PALGRAVE.IVS.9500025
https://doi.org/10.1057/PALGRAVE.IVS.9500025
https://doi.org/10.1057/PALGRAVE.IVS.9500025
https://python-graph-gallery.com/bubble-plot/
https://python-graph-gallery.com/bubble-plot/
https://books.google.cz/books?id=7f5bBAAAQBAJ
https://doi.org/10.5772/9385
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://docs.python.org/3/library/pickle.html

Appendix A

Scatter plots and tables

Classifier Accuracy

1-NN 99.3 %
5-NN 98.7 %
NB 97.4 %
DT 95.7 %
SVM 98.6 %

Table A.1: Total accuracy of classifiers on subject P

Procedure
Upper-left edge 12s
Lower-left edge 12s
Lower-right edge 12s
Upper-right edge 12s

Middle 12s
Empty 30s

Table A.2: Altered data set acquisition procedure for sitting

By following the procedure A.2, 1 minute of the sitting posture can be acquired and 30
seconds of empty bed. This procedure needs to be repeated 5 times.

39

APPENDIX A. SCATTER PLOTS AND TABLES

Figure A.1: Scatter matrix of strain gauges (subject H)

Figure A.2: Scatter matrix of strain gauges (subject P)

40

APPENDIX A. SCATTER PLOTS AND TABLES

Figure A.3: 3D Scatter plot of strain gauges (subject P)

Figure A.4: Scatter plot centers of mass (subject P)

41

Appendix B

List of attachments

experiment.mp4 – the recording of the experiment described in chapter 6

scatter-plot.py – the scatter plot implementation, contains prediction and
classification model

line-plot.py – implementation of the line plot

normalize.py – normalization for classification purposes

classification.py – classifier model generation script.

42

	Introduction
	Motivation
	Goal description
	Structure
	State of the art

	Smart hospital bed
	Basic description
	Communication

	Data
	Structure description
	Data processing
	Endianness
	Signed number representation
	Byte stuffing

	Data visualization
	Tools
	Implementation
	Line plot
	Scatter plot

	Discussion
	Visualization in higher-dimensions

	Activity detection
	Classes of activities
	Classification
	Data set acquisition
	Preprocessing
	Performance estimator

	Results
	Discussion

	Online detection
	Implementation
	Classification model
	Experiment

	Conclusion
	Future research

	Appendix Scatter plots and tables
	Appendix List of attachments

